Respiração Celular


Todas as células vivas possuem uma elevada organização interna que é composta pela associação de substâncias orgânicas e inorgânicas. O estado de organização interna não é espontâneo nem permanente; e, por ser instável, pode reverter muito facilmente ao estado inanimado. O que mantém as características que diferem o vivo do não-vivo é uma entrada constante de energia. Segundo a Termodinâmica, há duas formas de energia: a energia livre ou utilizável e a entropia ou energia não utilizável.
Em qualquer transformação de energia, a energia livre (mais organizada e concentrada) tende a passar para uma forma menos organizada e menos concentrada, a entropia. As células precisam de energia para não se desestruturarem e para promoverem seus processos mecânicos, elétricos, osmóticos, bioquímicos.
Mas, ao utilizar esta energia, a célula a desorganiza e a dissipa, de modo que não pode voltar a usá-la. Portanto, as células, como unidades metabólicas, precisam de um fluxo de energia exterior que venha de uma fonte até elas. Pela natureza destas fontes, dividimos os seres vivos em autótrofos e heterótrofos. Os autótrofos têm a capacidade metabólica de sintetizarem, para o seu sustento, moléculas orgânicas a partir de substâncias inorgânicas de baixo peso molecular.

Catabolismo e Anabolismo

A degradação de compostos orgânicos com a finalidade de obtenção de energia é denominada catabolismo. O catabolismo libera energia química potencial, parte da qual toma a forma de calor. Já o conjunto de reações que sintetizam matéria orgânica e protoplasma é conhecido como anabolismo.

Adenosina Trifosfato

O ATP é o nucleotídeo trifosfatado mais importante. Ele participa das inúmeras reações e processos metabólicos relacionados à transferência e conversão de tipos de energia. A hidrólise do radical fosfato terminal do ATP, formando difosfato de adenosina (ADP) e fosfato inorgânico, libera energia livre, quantidade apropriada para as funções celulares.
A energia do ATP é disponibilizada para as células pelo acoplamento da hidrólise desta substância a reações químicas que requeiram energia. No hialoplasma, existe apenas uma pequena reserva de ATP, de tal maneira que, à medida que ele é utilizado, deve ser reposto por meio de reações que fosforilam o ADP a ATP. Existem dois mecanismos de regeneração do ATP.
O primeiro é a fosforilação pelo nível de substrato, em que um radical fosfato é transferido para o ADP por um composto intermediário, a fim de formar o ATP. Este tipo de fosforilação pode ocorrer na ausência de oxigênio, condição denominada de metabolismo anaeróbico.
O segundo mecanismo de produção de ATP é a fosforilação oxidativa, que ocorre nas membranas internas das organelas denominadas mitocôndrias, e que exige a presença de oxigênio molecular.

A fosforilação oxidativa produz a maior parte do ATP utilizado pelo organismo. O conjunto das reações que compõem a fosforilação oxidativa é chamado metabolismo aeróbico.

Carreadores de elétrons: NAD e FAD

As reações metabólicas que degradam a glicose e obtêm energia para a célula são do tipo oxidação e redução (também denominada oxirredução).
A maior parte da energia da glicose é retirada por meio de reações de oxirredução. Nestas reações participam substâncias conhecidas como coenzimas. As mais importantes coenzimas carreadoras de elétrons são o dinucleotídio de nicotinamida-adenina e o dinucleotídio de flavina-adenina. As formas oxidadas dessas coenzimas são abreviadas por NAD+ e FAD+; as formas reduzidas são NADH e FADH2.

Glicólise

A primeira via do metabolismo energético da glicose é a glicólise. A glicólise ocorre totalmente por enzimas dissolvidas no hialoplasma. Este processo metabólico não exige oxigênio molecular e pode ocorrer na sua ausência. A glicólise produz duas moléculas de ATP (por fosforilação pelo nível de substrato) para cada molécula de glicose consumida.
Em geral, nas células, a concentração de glicose é muito menor que a do líquido extracelular. Essa diferença de concentração (=gradiente de concentração) é mantida por regulação homeostática. Quando as moléculas de glicose adentram no hialoplasma muito rapidamente, vão para a via de oxidação (glicólise) ou são armazenadas sob a forma de glicogênio.
Como resultado final, a concentração hialoplasmática de glicose é muito baixa, o que faz com que exista sempre um gradiente de concentração que favorece a difusão de glicose para o interior da célula. A glicose é uma molécula muito polar, de modo que, mesmo havendo um gradiente de concentração, ela não atravessa a membrana plasmática. Na maioria dos tecidos, o transporte de glicose exige a ação do hormônio pancreático insulina, que regula a entrada de glicose e aminoácidos nas células.
Primeiramente, na glicólise, a molécula de glicose é convertida em diversas substâncias, até que enfim, em duas moléculas de ácido pirúvico.
A conversão de duas moléculas de gliceraldeído em duas de pirúvico produz duas moléculas de ATP, duas moléculas de NADH e kcal de calor. Como duas moléculas de ATP foram gastas no início do processo, o resultado efetivo é de duas moléculas de ATP para cada molécula de glicose.
A conversão de um mol de glicose em dois moles de piruvato resulta na produção de dois moles de NADH. Esse NADH deve ser reoxidado para que a glicólise continue. Se o pirúvico vai para a mitocôndria (metabolismo aeróbico), o NAD+ será regenerado por essa via. Se a célula não possui enzimas para o metabolismo aeróbico ou não há oxigênio disponível, a célula regenera o NAD+ pela conversão de pirúvico em ácido láctico, processo em que o NADH transfere o hidrogênio para o pirúvico. As células musculares esqueléticas, em ausência de oxigênio molecular, podem realizar esta glicólise anaeróbica com produção final de ácido láctico.
Após a glicólise, o piruvato vai para a mitocôndria onde é transformado em grupo acetil (molécula com dois carbonos), que, por sua vez, é degradado no ciclo de Krebs, onde se produz mais 36 moléculas de ATP para cada molécula de glicose processada.

Ciclo de Krebs

O ciclo de Krebs, ou ciclo do ácido cítrico, é uma sequência circular de oito reações que ocorre na matriz mitocondrial. Nessas reações, os grupos acetil (que provêm dos dois pirúvicos que, por sua vez, vieram da glicose) são degradados em duas moléculas de gás carbônico, ao mesmo tempo que quatro elétrons são transferidos para três NAD e um FAD, e uma molécula de ATP é formada por fosforilação pelo nível de substrato.
Para entrar no ciclo do ácido cítrico, os pirúvicos deve ser, primeiramente, descarboxilado, liberando CO2 e formando NADH. A molécula de gás carbônico produzida será, tal quais outras resultantes do ciclo de Krebs, excretada no nível dos alvéolos pulmonares, no processo conhecido como respiração sistêmica. A molécula com dois carbonos (grupo acetil) combina-se com a coenzima A, formando a acetil-CoA. radicais acetil provindos de lipídios também entram no ciclo de Krebs como acetil-CoA. Alguns aminoácidos oriundos do catabolismo de proteínas podem ser convertidos em intermediários do ciclo de Krebs.
Durante as reações do ciclo, são retirados hidrogênios do acetil e estes são passados para os nucleotídeos NAD+ e FAD, que levam estes hidrogênios para as cristas mitocondriais, onde acontece a fosforilação oxidativa, que gera ATP. No processo de fosforilação oxidativa ocorrem: o transporte de elétrons; a síntese de ATP por meio de uma enzima; o consumo de oxigênio molecular e a produção de moléculas de água.

Cadeia Respiratória e a Fosforilação Oxidativa

A maior parte do ATP formado na respiração celular provém do processo de fosforilação oxidativa que ocorre nas cristas mitocondriais. Nas membranas internas da mitocôndria existe uma série de enzimas contendo ferro (chamadas citocromos) que constituem a cadeia respiratória.
Os citocromos da cadeia respiratória, inicialmente, transferem os elétrons do NADH e do FADH2 para si e, após, cedem estes elétrons para o oxigênio, reduzindo-o a água. No processo de transporte de elétrons ao longo da cadeia respiratória, acontece liberação de energia. Parte dessa energia é perdida (dissipada) sob a forma de calor, outar parte é usada para transportar prótons (H+), através da membrana interna, da matriz até o espaço intermembranoso. Deste modo, a energia é guardada sob a forma de um gradiente de prótons entre a matriz e o espaço intermembranas.

Respiração Anaeróbica
Não utiliza o oxigênio, e é também denominada de fermentação. Ocorre em certas bactérias - fermentação ácida (lática ou acética) e em lêvedos, fermentação alcoólica. Produz 4 ATP e consome 2, produzindo um saldo de apenas 2 ATP. As leveduras são células eucarióticas que possuem mitocôndrias e realizam os dois tipos de respiração simultaneamente. As fibras musculares estriadas também realizam os dois tipos de respiração. A dor muscular observada após exercício físico intenso deve-se ao acúmulo de ácido lático entre as fibras musculares. Esse ácido leva de 7 a 10 dias para ser reabsorvido pelo organismo.

Fermentação Alcoólica
C6H12O6 == 2 CO2 + 2 C2H5OH + D G = 2 ATP
Fermentação Lática
C6H12O6 == C3H6O3 + D G = 2 AT

Comentários